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A B S T R A C T   

Over the last few decades, isotopic analysis of amino acids at the compound- and position-specific levels has been 
rapidly advancing across diverse fields. As these techniques progress, evaluation of isotopic fractionation asso-
ciated with sample workup is essential. This critical review of analytical methods through the lens of isotope 
geochemistry provides a benchmark for researchers across disciplines seeking to make compound- and position- 
specific amino acid isotope measurements. We focus on preparation, acid hydrolysis, clean-up, derivatization, 
separation, and C, H, N, and S isotope measurement. Despite substantial customizability across these steps, the 
following general recommendations should maximize recovery while minimizing isotopic fractionation. Samples 
should be freeze-dried and stored anoxically at ≤ –20 ◦C prior to conventional acid hydrolysis (6N HCl, 110 ◦C, 
20–24 h, anoxic), which suffices for many residues. Both gas and liquid chromatographic (GC and LC, respec-
tively) techniques are well-established and separate about 15 amino acids; LC bypasses the need for derivati-
zation, while GC provides higher sensitivity. When derivatization is needed, n-acetyl and alkoxycarbonyl esters 
provide the most reproducible C isotope ratios. For compound-specific analyses, online GC–IRMS and LC–IRMS 
systems offer the easiest workflow, but EA–IRMS enables potential multi-element isotope analysis. Emerging 
techniques like high-resolution mass spectrometry are also promising for multi-element analysis and recover 
position-specific isotopic information. Looking forward to the next decade of innovation, isotope geochemists 
and ecologists can improve amino acid isotope analysis by focusing on streamlining multi-element analysis and 
standardizing calibration practices across laboratories.   

1. Introduction 

Stable isotope ratios (13C/12C, 15N/14N, 2H/1H, and 34S/32S) of 
amino acids record details of biosynthesis, enabling interrogation of 

environmental and physiological processes. This review covers common 
steps within the workflow for amino acid isotope analysis, including 
protein hydrolysis, derivatization, chromatographic separation, and 
isotope ratio detection (Fig. 1). While these steps build on earlier studies 
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quantifying amino acids (e.g., Homer, 1915; Tristram, 1939; Rees, 
1946), no review has covered amino acid isotope analysis in full, but 
rather have provided overviews of C and N isotope analysis that 
emphasize data interpretation and ecological applications (Ohkouchi 
et al., 2017; McMahon and Newsome, 2019; Whiteman et al., 2019). 
Here we review published techniques encompassing sample preparation 
through isotope ratio measurement for C, N, H, and S (Fig. 1). We 
highlight (1) where nonquantitative reactions and/or incomplete sepa-
rations can fractionate isotopes, and (2) established and emerging 
analytical options available to isotope geochemists that enable 
compound-specific and position-specific isotope analysis of amino acids. 

1.1. Terminology 

Natural-abundance stable isotope compositions are typically re-
ported in delta (δ) notation (Urey, 1948; McKinney et al., 1950) to 
highlight small variations between samples. A δ value is the relative 
difference in isotope ratio (R) between a sample and standard (Eq. 1), 
commonly expressed in parts per thousand (per mil, ‰). The heavy (i.e., 
rare) isotope is placed in the numerator of R by convention. 

δ =
Rsample − Rstandard

Rstandard
=

Rsample

Rstandard
− 1 (1) 

Isotopic substitutions alter the bond energies and physical properties 
of molecules, causing them to react at different rates or partition 
differently between phases. These physical phenomena are “isotope ef-
fects,” defined as the change in some chemical or physical parameter 
(kinetic rate constant, equilibrium constant, vapor pressure, etc.) due to 
isotopic substitution. A kinetic isotope effect (KIE) represents the ratio of 

reaction rate constants between two isotopologues (versions of mole-
cules with differing isotopic substitutions); a “normal” KIE describes a 
reaction in which the lighter isotope reacts faster (Hayes, 2002). Isotope 
effects are considered primary at the reacting atomic position(s), and 
secondary at non-reacting positions (Hayes, 2002). 

Isotope effects result in measurable differences in isotopic composi-
tion between products, pools, materials, etc., called “fractionations.” 
Isotope fractionations are commonly expressed as fractionation factors 
(α), the ratio of isotope ratios between two pools of interest (Hayes, 
2002). For example, given the generic reaction A → B, the isotopic 
fractionation would be described as: 

αB− A =
RB

RA
(2) 

There is no consensus on whether reactant or product belongs in the 
numerator of α. Throughout this review, we use the convention shown in 
Eq. (2), which for a normal KIE results in α < 1. For convenience, α is 
occasionally expressed as an ε value, in ‰ (Eq. (3)). For further review 
on notation and calculations, we refer the readers to Hayes (2002) and 
Coplen (2011). 

ε = (α − 1) × 103 (3)  

2. Sample storage and preparation 

Sample storage conditions should be selected to minimize amino acid 
degradation and contamination, ideally achieved by storing freeze-dried 
or frozen samples in clean plastic or baked glassware with an anoxic 
headspace. Higher storage temperatures (> –20 ◦C) may promote 

Fig. 1. A typical workflow for amino acid isotope 
analysis, highlighting the major preparatory and 
analytical steps examined in this review paper. We 
cover sample preparation, acid hydrolysis, clean-up, 
derivatization, separation, and isotopic analysis. 
Sample preparation includes drying and homogeni-
zation steps, and, less commonly, clean-up steps prior 
to hydrolysis. Peptide-bound amino acids can be 
released by acid hydrolysis and are typically followed 
by additional clean-up steps depending on the sample 
matrix. Amino acids must be derivatized to decrease 
their polarity and make them amenable to separation 
by gas chromatography. Samples can also be sepa-
rated without derivatization via liquid chromatog-
raphy. Finally, isotope measurements are achieved via 
a variety of established and emerging techniques 
including isotope ratio mass spectrometry (IRMS), 
high-resolution mass spectrometry (e.g., Orbitrap), or 
nuclear magnetic resonance (NMR). Insets show pep-
tide bonds cleaved during acid hydrolysis and 
example derivative groups added during 
derivatization.   
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decomposition (Laegeler et al., 1974; Rutherfurd and Gilani, 2009; 
Whiteman et al., 2019), while oxic conditions can degrade cysteine, 
methionine, and tryptophan (Hunt, 1985). There is no consensus on 
whether plastic or glass containers are better for amino acid recovery. 
Because dust, fingerprints, sweat, and reagents may introduce contam-
inant amino acids (Ozols, 1990; Henrichs, 1991; McCoy et al., 2019, and 
references therein), any glassware, foil, or glass fiber filters that will 
contact samples should be baked (e.g., at 450 ◦C for 8 h; Molero et al., 
2011; Larsen et al., 2013; Unger and Holzgrabe, 2018; Whiteman et al., 
2019). Most samples should be homogenized – e.g., by mortar and 
pestle, bead beater, or cryogenic grinding – before or after storage to 
increase efficiency of acid hydrolysis. 

While general storage recommendations can be made, pretreatment 
is more sample-dependent as geochemists process diverse sample 
matrices ranging from hard rocks to soft tissues. The goal of pretreat-
ment is to remove large, non-amino acid components that interfere with 
measurement (e.g., through co-elutions or column overloading) and 
cannot be eliminated at a later stage. However, as each additional step 
may lower recovery or fractionate isotopes, we recommend minimizing 
pretreatments and monitoring procedural blanks and external stan-
dards. Procedural blanks are controls that do not contain the sample 
matrix and are subjected to the entire workflow, including pretreatment; 
external standards are well-characterized materials (e.g., proteins like 

bovine serum albumin or amino acids with known isotope ratios) that 
are processed alongside samples. Additional pretreatment steps are 
highly matrix-specific and should be carefully assessed, but could 
include surface rinsing, mechanical abrasion, or deeper cleaning (e.g., 
Hare et al., 1991; Johnson et al., 1998; Schiff et al., 2014); solvent 
extraction to remove lipids from fatty tissues (Bligh and Dyer, 1959; 
Newsome et al., 2018; Whiteman et al., 2019); demineralization with 
hydrofluoric acid (Cheng, 1975; Gélinas et al., 2001; Ingalls et al., 2003; 
Nunn and Keil, 2006); or decarbonation with hydrochloric acid (e.g., 
Hare et al., 1991; Johnson et al., 1998; Schiff et al., 2014). Protein 
extraction prior to hydrolysis, though tempting to avoid interfering 
components, is not recommended, as this procedure is labor-intensive 
and introduces bias by preferentially removing hydrophilic or hydro-
phobic peptides (Nguyen and Harvey, 1998; Wang et al., 2003; Nunn 
and Keil, 2006; Niu et al., 2018). 

3. Acid hydrolysis 

The goal of acid hydrolysis is to liberate proteinogenic amino acids 
into their “free” (non-peptide-bound) forms (Fig. 2) with maximum re-
covery and minimal isotopic fractionation. Studies have largely 
converged on heating samples in 6 N HCl for 20–24 h at 110 ◦C under 
anoxic conditions (e.g., flushed with N2 gas; Moore and Stein, 1963; 

Fig. 2. Structures of 20 common proteinogenic amino acids in zwitterion form at pH 7. Residues are grouped by side-chain chemistries. Numbering for amino acid C 
sites (e.g., C-1) used throughout this review is shown. 
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Fountoulakis and Lahm, 1998; Rutherfurd and Gilani, 2009; Fogel et al., 
2016), hereafter referred to as “conventional hydrolysis.” We recom-
mend this method for most applications, as it results in high recoveries 
and negligible fractionation of many amino acids with minimal addi-
tional chemical workups (Fig. 3). Here we discuss this conventional 
hydrolysis method and its variations, including different durations and 
additives that stabilize certain amino acid side-chains. We also discuss 
fast hydrolysis alternatives, including microwave and vapor-phase 
methods. It is important to emphasize that no single hydrolysis 
method recovers all amino acids (Fig. 4); in particular, no current 
method prevents quantitative deamidation of asparagine and glutamine 
to aspartic acid and glutamic acid (Supplementary Fig. S2; Supple-
mentary Section 1.2; Hill, 1965; Wright, 1991, Rutherfurd and Gilani, 
2009). Yields and isotopic compositions are therefore commonly re-
ported as asx (asparagine + aspartic acid) and glx (glutamine + glutamic 
acid). Loss mechanisms are influenced by amino acid side-chain chem-
istry (e.g., hydroxyl groups on serine and threonine; see Supplementary 
Section 1), protein composition (e.g., the proportion of S-containing 
amino acids), and hydrolysis method (e.g., duration, temperature). 
Sample matrix effects also likely influence yields, but studies thus far 
have focused on loss and isotopic fractionations of pure standards or 
synthetic polypeptides and cannot account for the complexity of 
geochemically relevant samples. 

3.1. Conventional hydrolysis 

Conventional hydrolysis (6 N HCl, 110 ◦C, 20–24 h, anoxic condi-
tions) results in consistently high yields for 13 of the 20 amino acids 
(Figs. 3 and 4; Supplementary Table S1), including all aliphatic and 
basic amino acids. Lengthening or shortening hydrolysis duration re-
duces the total number of stable residues but can maximize yields of 
particular amino acids (Fig. 4). For example, extended hydrolyses (>24 
h) improve recoveries of most aliphatic amino acids, especially valine, 
leucine, and isoleucine (Darragh and Moughan, 2005) at the expense of 
other amino acids (Hirs et al., 1954; Smith and Stockell, 1954; Darragh 
et al., 1996). Meanwhile, shortened hydrolysis times (<20 h) optimize 
yields of serine and threonine (Rowan et al., 1992; Albin et al., 2000), 
with maximum recovery between ~10 and 16 h (Gardner, 1981; Gehrke 
et al., 1985; Rutherfurd, 2009). Although phenylalanine and tyrosine 
are stable regardless of hydrolysis length, tryptophan has low and var-
iable yields (0–55%; Fig. 3; Supplementary Table S1; Keutmann and 
Potts, 1969; Matsubara and Sasaki, 1969; Mondino and Bongiovanni, 
1970; Hunt, 1985; Manneberg et al., 1995, Rutherfurd and Gilani, 
2009). Like tryptophan, sulfur-containing and amidic amino acids are 
unstable regardless of hydrolysis length (Fig. 4; Hunt 1985). 

3.2. Isotopic fractionation 

Each amino acid experiences different mechanisms and magnitudes 
of loss during conventional hydrolysis, which can lead to isotopic frac-
tionation. We review what is known about isotopic fractionation during 
hydrolysis and peptide bond cleavage; mechanistic details concerning 
amino acid losses are presented in Supplementary Section 1. Studies of 
pure amino acid standards subjected to hydrolysis conditions revealed 
minimal C isotope changes (Demmelmair and Schmidt, 1993; Metges 
and Daenzer, 2000), even for amino acids with significant losses like 
serine and methionine. This is further supported by Jim et al. (2003), 
who found no detectable C isotope fractionation upon hydrolysis of 
synthetic alanine, serine, glutamic acid, phenylalanine, leucine, or 
proline polypeptides. Nitrogen isotopes may be more susceptible, 
especially in aliphatic amino acids. Bada et al. (1989) observed ~20‰ 
15N-enrichment of residual, unhydrolyzed collagen, and Silfer et al. 
(1992) observed temperature-dependent normal 15N-KIEs of 
0.9960–0.9975 for residual diglycine. We also caution interpreting δ15N 
values of asx and glx due to the loss of amide-N from asparagine and 
glutamine. Although few studies have investigated H isotopes of amino 
acids, deuterated and tritiated hydrolysis experiments suggest H isotope 
exchange with the aqueous medium is significant for tyrosine (C-3 
atomic site; Fig. 2), aspartic acid (C-3 site), and glutamic acid (C-4 site; 
Hill and Leach, 1964; Fogel et al., 2016). Studies of S isotopes are also 
limited but indicate a 34S-KIE of 0.985 associated with oxic degradation 
of cysteine during conventional hydrolysis (Phillips et al., 2021). 
Importantly, the lack of geochemically-relevant sample matrices in all 
the aforementioned studies limits the scope of conclusions that can be 
drawn. Moving forward, a more comprehensive characterization of 
isotope fractionations accompanying protein hydrolysis in complex 
matrices like sediments and soils is needed. 

3.3. Alternative hydrolysis methods 

Variations on conventional hydrolysis offer some specific advan-
tages, including: (1) protection of certain amino acids through chemical 
additives and/or (2) much faster hydrolysis times via microwave or 
vapor-phase methods. For additives, the use of β-mercaptoethanol ap-
pears most promising, as it increases the number of stable residues from 
13 to 17 (Fig. 4; Hunt, 1985; Ng et al., 1987). We especially recommend 
the use of β-mercaptoethanol for studies of tryptophan, as this is the only 
method that can reproducibly recover this residue. Phenol is another 
common additive as it mitigates halogenation of aromatic residues, but 
it does not stabilize other amino acids so is not recommended for general 
use. Addition of the oxidizing agent performic acid is one of the few 
hydrolysis methods that recovers cysteine, but it destroys several aro-
matic and hydroxylic residues (Fig. 4; Hunt, 1985; Rutherfurd and 
Gilani, 2009). Microwave-assisted and vapor-phase methods achieve 

Fig. 3. Yields of free amino acid standard 
mixtures (dark gray triangles) and of amino 
acids from proteins (light gray shapes) after 
conventional acid hydrolysis (6 N HCl, 110 ◦C, 
20–24 h, anoxic conditions). Corresponding 
yield data can be found in Supplementary Table 
S1. Abbreviations and references: AA STDs, 
amino acid standard 1 (Mondino and Bongio-
vanni, 1970) and amino acid standard 2 
(Keutmann and Potts, 1969); RNASE, Ribonu-
clease (Keutmann and Potts, 1969); CYT C, 
Cytochrome c (Matsubara and Sasaki, 1969); 
TMV, Tobacco mosaic virus (Matsubara and 
Sasaki, 1969); BSA, Bovine serum albumin 
(Manneberg et al., 1995); LYZ, Lysozyme 
(Manneberg et al., 1995); TRX, Thioredoxin 
(Manneberg et al., 1995); IFN A, Interferon A 
(Manneberg et al., 1995).   
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complete hydrolysis in < 90 min and generally recover the same amino 
acids as conventional hydrolysis (Fig. 4; Tsugita et al., 1987; Chiou, 
1989; Weiss et al., 1998; Yarnes and Herszage, 2017), although with 
slightly lower yields (Enggrob et al., 2019). Vapor-phase methods have 
the added benefit of minimizing contact between samples and liquids, 
reducing potential contamination. These high-temperature, short-dura-
tion hydrolyses also limit amino acid racemization (Csapó et al., 1997) 
and potentially minimize H isotope exchange with the aqueous medium. 

4. Analyte clean-up 

There are two main goals of clean-up: (1) removing large particles 
and (2) eliminating extraneous compounds such as lipids, carbohy-
drates, and salts that are liberated during acid hydrolysis. These com-
ponents can interfere with derivatization and isotope analysis (e.g., by 
consuming derivatizing reagents or damaging the gas chromatography- 
isotope ratio mass spectrometer (GC–IRMS) combustion interfaces; 
Cheng et al., 1975; Hedges and Stern, 1983; Takano et al., 2010). At a 
minimum, large particles must be removed. While this can be accom-
plished via filtration with baked glass fiber filters (Amelung and Zhang, 
2001), quartz wool pipette columns (Enggrob et al., 2019), or non- 
protein binding syringe filters (e.g., PES, PVDF; Larsen et al., 2013; 
Phillips et al., 2021), we recommend cation exchange chromatography 
(Section 4.1) for most applications because it eliminates both salts and 
particles. Less commonly, organic/aqueous solvent extraction can 
complement cation-exchange chromatography to remove excess hy-
drophobic components (e.g., lipids from fatty tissues). Solvent extrac-
tion is recommended for samples with > 2% lipid content (McMahon 
and Newsome, 2019) and can be performed before or after hydrolysis. 
Some derivatizing reagents (e.g., BSTFA) require moisture-free reaction 
conditions so samples must be carefully dried as a final clean-up step. 
This can be achieved via rotary evaporation, addition of sodium sulfate 

desiccants, or azeotropically with dichloromethane (DCM). 

4.1. Ion exchange 

Studies have converged on the Dowex 50WX8 hydrogen form resin 
(200–400 mesh) for cation exchange. Most amino acids are recovered 
with >90% yield, including from complex matrices like clay minerals 
(Supplementary Table S2; Moore and Stein, 1951; Cheng et al., 1975; 
Amelung and Zhang, 2001; Takano et al., 2010). Cation exchange also 
preserves amino acid chirality and introduces no background contami-
nants when resins are washed (Takano et al., 2010). Additional rinses 
with 0.1 N oxalic acid can be added to remove metal cations from soils, 
rocks, and sediment samples (Amelung and Zhang, 2001). As cation 
exchange involves both binding of the amine group and elution with 
ammonia, potential alteration of δ15N values is a concern. However, 
Takano et al. (2010) observed < 0.3‰ differences in δ15N values for 12 
amino acids before versus after elution on the Dowex 50WX8 resin, 
despite losses of up to 17% (Supplementary Table S2). Carbon is not 
involved in adsorption or elution and is not expected to fractionate. 
Indeed, Abelson and Hoering (1961) found minimal C isotope frac-
tionation (< 0.6‰) of alanine on the Dowex 50WX8 resin. 

Anion exchange (Dowex 1X8) is another option for desalting (Cheng 
et al., 1975), but is far less common, perhaps due to (1) the fact that in 
geochemical samples, interfering anions (i.e., sugars and organic acids) 
are present in greater concentrations than cations, (2) evidence of C 
isotope fractionation during elution (Abelson and Hoering, 1961), and 
(3) the need to work with corrosive HF to condition some anion ex-
change resins (Abelson and Hoering, 1961). 

5. Derivatization (for gas chromatography) 

Derivatization is required to make amino acids amenable to 

Fig. 4. Summary of stable and unstable residues during common acid hydrolysis procedures. Primary loss mechanisms are denoted by shapes. Conventional hy-
drolysis is defined as 20–24 h at 110 ◦C in 6 N HCl under anoxic conditions. The recommended vapor phase hydrolysis uses 7 N HCl, 10% trifluoroacetic acid, and 
0.1% phenol for 22 min at 158 ◦C. The recommended microwave assisted hydrolysis uses 6 N HCl, 0.02% phenol, 0.2% 3-(2-aminoethyl)-indole for 4 min at 155 ◦C. 
See text for details and references. 
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separation by GC. Polar functional (carboxyl, amine, hydroxyl, and 
thiol) groups are modified via the addition of various organic moieties to 
make amino acids more volatile, with the products termed “derivatives.” 
For H isotope analysis, derivatization serves the additional purpose of 
removing exchangeable H atoms, such as on carboxyl and amine groups, 
that would otherwise equilibrate with the aqueous medium and alter the 
original δ2H value. 

Derivatization strategies for amine and carboxyl groups can be 
chosen independently, provided the reactions are compatible, leading to 
a variety of combinations (Tables 1 and 2). Amine, hydroxyl, and thiol 
side-chains are typically derivatized by the same reagent used for the 
amine group. No single derivatization strategy is optimized for all 20 
amino acids (Tables 1 and 2). In particular, arginine and histidine are 
incompatible with many reactions (Table 1; Hušek and Macek, 1975). 
Several factors govern the selection of GC derivatives, including reaction 
time, ease of procedure, product volatility, derivative stability, the 
number of non-analyte atoms added, reaction yield, byproduct forma-
tion, enantiomer preservation (i.e., lack of racemization), combustion or 
pyrolysis efficiency, and chromatographic resolution. Tradeoffs abound: 
for example, a less stable derivative may be preferable if the reaction is 
rapid, as samples can be derivatized immediately before analysis. 

Derivatizing reagents should be present in excess to enable reaction 
completion and avoid isotopic fractionation of amino acids (Docherty 
et al., 2001). However, even under these conditions, it appears that 
derivatization reactions are not always quantitative, as N isotope frac-
tionation accompanies formation of many derivative products (Table 1; 
Hofmann et al., 2003; Walsh et al., 2014). All derivatizing agents add C 
and/or H atoms which alter the molecular isotope ratio of derivatized 
amino acids (Fig. 5; Tables 1 and 2) and must be subtracted. Large de-
rivative groups are less suited for isotope analysis, as analytical uncer-
tainty scales with the number of atoms added by the derivative group(s) 
(Rieley, 1994). For details on this data correction, error propagation, 
and associated isotope effects, see Supplementary Section 2. 

Numerous derivatives are used in ecological and geochemical 
studies. For N isotope analysis, we recommend pivaloyl derivatives, 
while for C and H isotope analysis, n-acetyl methyl esters (NACMEs) or 
methoxycarbonyl (MOC) methyl esters are ideal, as they introduce few 
exogenous atoms (Ohkouchi et al., 2017). Fluorinated derivatives, 
though popular, are best reserved for applications that do not rely on 
combustion or pyrolysis of analytes. We discuss these and other common 
amino acid derivatives for GC analysis below, with sections separated by 
targeted functional group (amine versus carboxyl). Reagent toxicity is 
not individually discussed, but it should be noted that many are acutely 
toxic (particularly pivaloyl chloride and methyl/ethyl chloroformate; 
Walsh et al., 2014; Ohkouchi et al., 2017). 

5.1. Amine group derivatives 

5.1.1. Pivaloyl derivatives 
Pivaloyl esters are optimal for δ15N analysis as they are stable, have 

excellent chromatographic properties, and can be coupled to esterifi-
cation of the carboxyl group to form a variety of derivatives (Fig. 5, 
Tables 1 and 2; Metges et al., 1996; Chikaraishi et al., 2007; Corr et al., 
2007b; Tea and Tcherkez, 2017). Furthermore, enantiomers are pre-
served and can be separated using chiral stationary phases (Abe et al., 
2002; Takano et al., 2009). Pivaloyl esters are not recommended for 
δ13C or δ2H analysis due to their many exogenous C and H atoms (Ta-
bles 1 and 2; Supplementary Eq. (6); Corr et al., 2007a). Pivaloylation is 
achieved with pivaloyl chloride and targets amine, hydroxyl, and thiol 
groups (Table 2; Corr et al., 2007b). An isotope effect is known for the 
carbonyl C of pivaloyl chloride during derivatization (Corr et al., 
2007b), and N isotope fractionation accompanying n-pivaloyl isopropyl 
ester formation has been observed (Table 1; Hofmann et al., 2003). 

5.1.2. Fluorinated derivatives 
Trifluoroacetyl (TFA) esters (and less commonly, 

pentafluoropropionic (PFP) and heptafluorobutyric (HFB) esters) are 
popular because they contain minimal exogenous atoms, are resolved 
with short retention times on standard GC columns and can be synthe-
sized in ~5–10 mins (Fig. 5; Tables 1 and 2; Silfer et al., 1991; Veuger 
et al., 2005; Corr et al., 2007b; Kayacelebi et al., 2015; Ohkouchi et al., 
2017; Riekenberg et al., 2017; Tea and Tcherkez, 2017). However, some 
TFA procedures are lengthier as they include several rounds of purifi-
cation (Hannides et al., 2009; McMahon et al., 2011). Despite their 
popularity, fluorinated derivatives have notable limitations when ana-
lytes must be combusted or pyrolyzed (i.e., during GC–IRMS analyses). 
During combustion, Cu and Ni oxides form fluorides, lowering the re-
actor’s oxidizing capacity (Meier-Augenstein, 1999; Tea and Tcherkez, 
2017) and potentially leading to incomplete combustion of amino acids. 
This can compromise both δ13C and δ15N values (Dunn et al., 2011; 
Ghashghaie and Tcherkez, 2013; Tea and Tcherkez, 2017). During py-
rolysis, HF is formed, which causes fractionation of H isotopes (Sauer 
et al., 2001; Renpenning et al., 2017) and can potentially corrode metal 
and silica components downstream of the reactor (Meier-Augenstein, 
1999; Corr et al., 2007b; Dunn et al., 2011). TFA derivatives pose 
additional analytical challenges, including their sensitivity to moisture 
and alcohol, and low stabilities both in storage and during GC separation 
(Table 2; Darbre and Blau, 1965; Hušek and Macek, 1975; Corr et al., 
2007b). 

While TFA derivatives should be avoided for combustion- and 
pyrolysis-based analyses, their extensive fragmentation in electron 
impact ion sources (e.g., Jones, 2002) makes them attractive targets for 
position-specific isotope analysis by high-resolution mass spectrometry 
(e.g., Orbitrap; see Section 7.2). Moreover, enantiomers are preserved 
and can be separated on chiral columns (Serban et al., 1988; Silfer et al., 
1991; Macko et al., 1997; McCarthy et al., 2004; Yamaguchi and 
McCarthy, 2018), and fluoroacetylation reactions can be adapted for 
arginine, which is not generally amenable to derivatization (Hušek and 
Macek, 1975; Amelung and Zhang, 2001; Kayacelebi et al., 2015). TFA 
derivative δ13C values must be corrected for the isotope effect expressed 
at the TFA carbonyl C atom during derivatization (Table 1; Silfer et al., 
1991; Corr et al., 2007b). N isotope fractionation during TFA isopropyl 
ester formation has been observed (Table 1; Hofmann et al., 2003). 

5.1.3. Non-fluorinated acetyl derivatives 
Reaction with acetic anhydride targets amine, hydroxyl, and thiol 

groups to form n-acetyl-based derivatives such as NACMEs (Fig. 5; 
Table 2; Corr et al., 2007a,b). For C isotope analyses, these non- 
fluorinated analogues perform better than, or similarly to, TFA de-
rivatives on several metrics. Dunn et al. (2011) compared amino acid 
δ13C values measured by liquid chromatography (LC)–IRMS and 
elemental analysis (EA)–IRMS against GC–IRMS and found that the n- 
acetyl derivatives consistently yielded better agreement among com-
plementary measurements than the TFA derivatives. N-acetyl de-
rivatives are also more stable, introduce the same number of C atoms, 
and can be separated on a variety of GC columns (Fig. 5; Tables 1 and 2; 
Adams, 1974; Corr et al., 2007a,b; Enggrob et al., 2019). Acetylation can 
cause fractionation for C and N isotopes, but data is easily correctable 
(Table 1; Hofmann et al., 2003; Corr et al., 2007a,b). 

5.1.4. Alkoxycarbonyl derivatives 
Methoxycarbonyl (MOC) methyl esters and ethoxycarbonyl (EOC) 

ethyl esters are favorable for C, N, and H isotope analyses because their 
reactions are simple and rapid (≤ 5 mins), do not require heating 
(Hušek, 1991a,b), introduce minimal non-analyte C and H (Tables 1 and 
2), and can be carried out in aqueous conditions (e.g., 0.1 N HCl), 
allowing for easy isolation of the products via extraction with organic 
solvent. Carbamate derivatives do not racemize (Zampolli et al., 2007) 
and can be baseline-separated on polar GC columns (Hušek, 1991b; 
Walsh et al., 2014). Alkyl chloroformate derivatizes amine groups 
(including the side-chains of lysine and histidine), as well as the phenol 
group of tyrosine (Huang et al., 1993; Chen et al., 2010). The side-chains 
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Table 1 
Common amino acid derivatives for GC separation.  

Derivativea Added Problematic 
amino acidsb 

Recommended 
columns 

Co- 
elutions 

KIE References 

C H 13αc 15αd 

NPNP 8–13 16–25 arg, asn, gln High polarity:  
ZB-WAX  
VF-23 ms  

0.891–0.982  Corr et al. (2007b); Tea and Tcherkez (2017)  

NPIP 8–13 16–25 arg, asn, cys, gln, 
his, trp, val 

Low to high 
polarity:  
Ultra-2  
ZB-WAX  
ZB-FFAP  

0.874–1.03 0.994–1.002 Metges et al. (1996); Metges and Daenzer (2000); 
Hofmann et al. (2003); Chikaraishi et al. (2007); Corr 
et al. (2007b); Tea and Tcherkez (2017); Ohkouchi et al. 
(2017)  

TFA-IP 5–8 7–14 arg, asn, cys, gln, 
his, trp 

Low polarity:  
ZB-1  
Ultra-2  

0.919–0.992 0.986–1.008 Hušek and Macek (1975); Silfer et al. (1991); Docherty 
et al. (2001); Hofmann et al. (2003); Corr et al. (2007b); 
Ohkouchi et al. (2017)  

TFA-ME 3–5 3–6 arg, asn, gln, his, 
ser, thr, tyr 

Low polarity:  
ZB-5    

Darbre and Blau (1965); Islam and Darbre (1972); 
Hušek and Macek (1975); Jim et al. (2006)  

PFP-IP 6–9 7–14 arg, cys, his Low polarity:  
Ultra-2 

lys/cys/ 
tyr   

Frank et al. (1982); Amelung and Zhang (2001); Glaser 
and Amelung (2002); Kayacelebi et al. (2015); Tea and 
Tcherkez (2017)  

HFB-IB 8–12 9–18 his, met Low polarity:  
DB-5    

Engel and Hare (1985); Golan and Wolfe (1979); 
MacKenzie and Tenaschuk (1979)  

NANP 5–8 10–17 arg, asn, cys, gln, 
his, thr 

High polarity:  
ZB-WAX  
ZB-FFAP  
VF-23 ms 

pro/thr  
(VF-23 
ms)  
phe/glx  
(ZB- 
WAX) 

0.948–0.997  Demmelmair and Schmidt (1993); Metges and Daenzer 
(2000); Corr et al. (2007b)  

NAIP 5–8 10–17 asn, gln High polarity:  
VF-23 ms 

ile/gly  
glu/met 

0.946–0.978 0.997–1.002 Adams (1974); Hofmann et al. (2003); Corr et al. 
(2007b); Yarnes and Herszage (2017)  

NACME 3–5 6–9 arg, asn, gln, gly, 
his, lys, met 

Mid to high 
polarity:  
DB-225 ms  
VF-23 ms  
DB-WAX 

leu/ile  
pro/thr  
(VF-23 
ms) 

0.933–0.981  Corr et al. (2007a,b); Dunn et al. (2011)  

MOC ME 3–5 6–9 arg, ser, his High polarity:  
VF-23 ms 

leu/ile 0.978–1.060 0.978–1.002 Hušek (1991a,b); Walsh et al. (2014)  

EOC EE 5–8 10–15 arg Mid to high 
polarity:  
DB-225 ms  
VF-23 ms  
DB-WAX 

ser/gln  
(DB- 
WAX)  
leu/ile  
(DB-225 
ms)   

Hušek (1991a,b);  
Godin et al. (2007)  

TMS 3–9 9–27  Low polarity:  
DB-5    

Molnár-Perl and Katona (2000); Sobolevsky et al. 
(2003); Zaikin and Halket (2005);   
Tea and Tcherkez (2017)  

t-BDMS 6–18 15–45  Low polarity:  
DB-5   

0.999–1.080e Molnár-Perl and Katona (2000); Hofmann et al. (2003); 
Sobolevsky et al. (2003); Tea and Tcherkez (2017)  

a Abbreviations: NPNP, n-pivaloyl n-propyl ester; NPIP, n-pivaloyl isopropyl ester; TFA-IP, trifluoroacetyl isopropyl ester; TFA-ME, trifluoroacetyl methyl ester; PFP- 
IP, pentafluoropropionyl isopropyl ester; HFB-IB, heptafluorobutyryl isobutyl ester; NANP, n-acetyl n-propyl ester; NAIP, n-acetyl isopropyl ester; NACME, n-acetyl 
methyl ester; MOC ME, methoxycarbonyl methyl ester; EOC EE, ethoxycarbonyl ethyl ester; TMS, trimethylsilyl; t-BDMS, tert-butyldimethylsilyl. 

b As reported in the specified literature (References column). 
c Range of 13α values reported in Corr et al. (2007b), except that for MOC ME, which is calculated from data in Walsh et al. (2014) using Eq. (2) in Corr et al. (2007b). 
d 15α calculated using Eq. (2) in Corr et al. (2007b) with data from Hofmann et al., 2003 (NPIP, TFA-IP, NAIP, and t-BDMS) and from Walsh et al., 2014 (MOC ME). 
e Calculated assuming amine, hydroxyl, and thiol groups are each derivatized by only one t-BDMS group, which may not be true (see discussion in main text). 
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Table 2 
Summary of reaction information for six major derivatization strategies employed for GC analysis of amino acids. Note that all derivatization methods for the amine 
group require correction for C isotope fractionation.  

Derivatization strategya Groups 
targeted 

Atoms 
per 
group 

Reaction 
time and 
temp 

Derivative 
stability 

Pros Cons References    

C H      

Pivaloylation with pivaloyl 
chloride 

Amine, 
hydroxyl, 
thiol 

5 9 120 mins,  
110 ◦C 

Months at  
–18 ◦C 

Highly stable; products 
have excellent 
chromatographic 
resolution; enantiomers 
preserved 

Generates co-eluting 
byproducts; adds many 
C and H atoms; reagent 
toxic 

Metges et al. (1996); 
Abe et al. (2002); 
Chikaraishi et al. 
(2007); Corr et al. 
(2007b); Tea and 
Tcherkez (2017) 

Fluoroacetylation with TFAA Amine, 
hydroxyl, 
thiol 

2 0 5 mins to 
1 d, 100 
◦C 

Days at  
–18 ◦C 

Derivatization can be 
rapid and targets arginine; 
adds few C and no H 
atoms; enantiomers 
preserved; products elute 
quickly, are well-resolved, 
and fragment extensively 
in electron impact ion 
sources 

Moisture- and alcohol- 
sensitive; δ13C and δ15N 
values comprised by 
CuF2, NiF2, and CO 
generation during 
combustion; δ2H values 
comprised by HF 
generation during 
pyrolysis; products can 
degrade during elution 
through some GC 
columns 

Darbre and Blau 
(1965); Hušek and 
Macek, (1975); 
Meier-Augenstein 
(1999); Jones (2002); 
McCarthy et al. 
(2004); Corr et al. 
(2007b); Hannides 
et al. (2009); Dunn 
et al. (2011); 
McMahon et al. 
(2011); Kayacelebi 
et al. (2015); 
Renpenning et al. 
(2017) 

with HFB 4 0   
with PFP 3 0 10 mins,  

110 ◦C   

Non-fluorinated 
acetylation 

with acetic 
anhydride 

Amine, 
hydroxyl, 
thiol 

2 3 10 mins,  
60 ◦C 

Months at  
–5 ◦C 

Products have good 
chromatographic 
resolution and are highly 
stable; adds few C and H 
atoms  

Adams (1974); Corr 
et al. (2007a,b); 
Dunn et al. (2011); 
Tea and Tcherkez 
(2017); Enggrob 
et al. (2019)  

Alkoxycarbonylation with methyl 
chloroformate 

Amine, 
hydroxyl, 
thiolb 

2 3 <5 mins,  
25 ◦C 

Weeks at  
− 20 ◦C 

Derivatization rapid; 
reaction in aqueous 
conditions; enantiomers 
preserved; adds few C and 
H atoms 

Reagent toxic; 
byproducts may form; 
certain side-chains not 
consistently 
derivatized; amino 
acids may not react 
quantitatively 

Hušek (1991a,b); 
Huang et al. (1993); 
Peláez et al. (2000); 
Montigon et al. 
(2001); Meier- 
Augenstein (2004); 
Zampolli et al. 
(2007); Chen et al. 
(2010); Walsh et al. 
(2014) 

with ethyl 
chloroformate 

3 5  

Esterification with methanol Carboxyl, 
hydroxylc 

1 3 5–60 
mins,  
25–70 ◦C 

Months at  
–18 ◦C 

Can be coupled with any 
derivatization strategy; no 
fractionation correction 
needed; reactions are 
rapid and quantitative; 
adds few C atoms 

Can be moisture or 
alcohol sensitive; n- 
propanol and 
isopropanol add many 
H atoms 

Hušek (1991a); Silfer 
et al. (1991); 
Chikaraishi et al. 
(2007); Corr et al. 
(2007a,b) 

with ethanol 2 5 

with  
n-propanol 

3 7 60 mins,  
100 ◦C 

with 
isopropanol 

3 7  

Silylation with BSTFA Carboxyl, 
amine, 
hydroxyl, 
thiol 

3 9 15–150 
mins,  
60–150 
◦C 

Hours at  
4 ◦C 

No extraction required; 
products very volatile; 
derivatization is 
quantitative and occurs in 
a single step 

Derivatization 
inconsistent; δ13C 
values compromised by 
silicon carbide 
formation in 
combustion reactor; 
adds many C and H 
atoms; products are 
moisture-sensitive and 
unstable 

Hušek and Macek 
(1975); Hofmann 
et al. (1995); 
Colombini et al. 
(1998); Molnár-Perl 
and Katona (2000); 
Shinebarger et al. 
(2002) Sobolevsky 
et al. (2003); Zaikin 
and Halket (2005); 
Tea and Tcherkez 
(2017) 

with 
MTBSTFA 

6 15  

a Abbreviations: TFAA, trifluoroacetic anhydride; HFB, heptafluorobutyric anhydride; PFP, pentafluoropropionic anhydride; BSTFA, bis-(trimethylsilyl)tri-
fluoroacetamide; MTBSTFA, methyltributylsilyl tetrafluoroacetamide 

b Thiol group of cysteine is derivatized when ethyl chloroformate is used, but not when methyl chloroformate is used. 
c Hydroxyl groups not usually esterified, but serine and threonine can be methylated upon derivatization to MOC methyl esters. 
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of serine, threonine, and cysteine are either esterified, acylated, or not 
derivatized, depending on the derivatizing reagents used (Huang et al., 
1993; Zampolli et al., 2007; Chen et al., 2010; Walsh et al., 2014). 
Carbon and nitrogen isotope fractionation accompany MOC ester for-
mation (Table 1; Sacks and Brenna, 2005; Walsh et al., 2014). 

Byproduct formation is known to occur during derivatization with 
alkyl chloroformate, but these products are easily separated from amino 
acids on the GC column (Hušek, 1998; Peláez et al., 2000; Chen et al., 
2010; Walsh et al., 2014). Additionally, a minor product can form in 
which the carboxyl group is esterified by the alkyl chloroformate rather 
than the alcohol (Peláez et al., 2000; Chen et al., 2010). Reaction con-
ditions for chloroformate-based derivatization can cause glutamic acid 
to cyclize (Airaudo et al., 1987; Hušek, 1991b; Huang et al., 1993; Sacks 
and Brenna, 2005; Walsh et al., 2014), and acidic and amidic amino acid 
pairs to interconvert (Chen et al., 2010), although amidic residues 
deamidate anyways during hydrolysis. 

5.2. Carboxyl group derivatives 

5.2.1. Ester derivatives 
Methyl ester derivatives are attractive because they form rapidly and 

quantitatively with few non-analyte C and H atoms (Tables 1 and 2). 
Ethyl, n-propyl, and isopropyl esters introduce more exogenous atoms, 
but may be selected to improve GC separation. Esterification reactions 
target carboxyl groups, but when coupled to derivatization with methyl 
chloroformate they can additionally target the hydroxyl groups of serine 
and threonine (Table 2; Huang et al., 1993; Zampolli et al., 2007; Chen 
et al., 2010; Walsh et al., 2014). Conditions for esterification are usually 
acidic, but basic conditions have been used occasionally (e.g., Tuckey 
and Stevenson, 1979; Corr et al., 2007b). Acidic conditions are created 
with acetyl chloride, thionyl chloride, or dilute HCl, although 

comparisons have found that acetyl chloride results in the highest yields 
of amino acids (Peláez et al., 2000; Corr et al., 2007b). Isopropylation 
and n-propylation require heating and must be performed in moisture- 
free conditions (e.g., Silfer et al., 1991; Chikaraishi et al., 2007; Corr 
et al., 2007b), while requirements for methylation and ethylation differ. 
When coupled to derivatization with alkyl chloroformates, reactions 
may be performed in aqueous conditions at room temperature (Hušek, 
1991a; Sacks and Brenna, 2005; Chen et al., 2010; Walsh et al., 2014), 
but when combined with other amine group derivatization strategies (e. 
g., acetylation or pivaloylation) anhydrous conditions and heating are 
required to avoid expression of isotope effects at carboxyl sites (Corr 
et al., 2007a,b). When excess reagent is used and reactions are quanti-
tative, negligible C isotope fractionation is expected, as C sites within the 
alcohol reagents do not directly participate in bond breakage or for-
mation (Silfer et al., 1991; Rieley, 1994; Corr et al., 2007a). 

5.2.2. Silyl derivatives 
Silylation is not recommended for amino acid isotope analysis 

despite being a popular GC derivatization strategy for other organic 
compounds (e.g., Tea and Tcherkez, 2017), as it can add a large number 
of non-analyte atoms (up to 18 C and 45 H; Table 1), products are 
moisture-sensitive and degrade rapidly (Hušek and Macek, 1975; 
Colombini et al., 1998), and multiple derivatives may add to amine or 
hydroxyl groups inconsistently (Colombini et al., 1998; Hušek and 
Macek, 1975; Molnár-Perland and Katona, 2000; Zaikin and Halket, 
2005; Tea and Tcherkez, 2017). Carbon does not participate in silyla-
tion, precluding expression of C isotope effects (Rieley, 1994). However, 
trimethylsilyl (TMS) derivatives may promote silicon carbide formation 
in GC–IRMS combustion reactors, leading to C isotope fractionation via 
non-quantitative conversion of analytes to CO2 (Shinebarger et al., 
2002; Tea and Tcherkez, 2017). Nitrogen isotope fractionation can be 

Fig. 5. Derivatives commonly used for gas chromatography separation of amino acids. Abbreviations: t-BDMS, tert-butyldimethylsilyl; TMS, trimethylsilyl; MOC, 
methoxycarbonyl; EOC, ethoxycarbonyl; NPIP, n-pivaloyl isopropyl ester; NPNP, n-pivaloyl n-propyl ester; NPME, n-pivaloyl methyl ester; NAIP, n-acetyl isopropyl 
ester; NACME, n-acetyl methyl ester; NANP, n-acetyl n-propyl ester; TFA-ME, trifluoroacetyl methyl ester; TFA-IP, trifluoroacetyl isopropyl ester; HFB-IB, hepta-
fluorobutyryl isobutyl ester; PFP-IP, pentafluoropropionyl isopropyl ester. 
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significant due to non-quantitative derivatization of amino acids and 
degradation of derivative products (Table 1; Hofmann et al., 1995, 
2003). 

6. Separations 

Amino acids must be separated from complex mixtures prior to 
isotope analysis, without inadvertently fractionating isotopes. Separa-
tion can be achieved using a variety of chromatographic techniques, 
stationary phases, and mobile phases, but to date no combination suf-
ficiently separates all 20 proteinogenic amino acids. Separation is 
commonly achieved by GC coupled directly to an IRMS (i.e., ‘online’ 
measurement) without intermediate analyte collection. This method 
requires derivatization and an associated correction for added C or H 
atoms. Less commonly, LC is used for preparatory (i.e., ‘offline’) sepa-
ration of underivatized amino acids, which are recovered using a frac-
tion collector, sometimes assessed for purity, then analyzed on a 
separate instrument (e.g., EA–IRMS). New LC–IRMS systems enable LC 
separation online prior to isotope ratio measurement (Section 7.1.2). 
Considerations for optimizing GC and LC separations are beyond the 
scope of this review, but the reader is referred to Rood (2007) and 
Snyder et al. (2010) for excellent guides. 

For many LC separations the lighter isotopologues elute from the 
column first (McCullagh et al., 2006; Broek et al., 2013), whereas for GC 
separations on nonpolar columns the heavier isotopologues typically 
elute first. Separation of isotopologues leads to isotopic fractionation 
across the width of a chromatographic peak. For example, differences 
between the front and tail halves of a peak separated using LC were 
8.3‰ and 4.2‰ for δ15N and δ13C values, respectively (Broek et al., 
2013). Thus, peaks must be completely collected or integrated to avoid 
altering the apparent isotope ratio of the sample (Meier-Augenstein, 
1999; Sessions, 2006). 

In the following sections, we compare GC and LC techniques for 
amino acid separation, examine the potential of IC and CE to be coupled 
to amino acid isotope analyses, and highlight several methods for 
determining sample purity. 

6.1. Gas chromatography 

GC is currently the most popular choice for separating amino acids 
for isotope analysis, yet there is no consensus on the best combination of 
stationary phase, derivative, and instrument settings. Many published 
approaches separate at least 10–15 amino acids (Table 1) in an hour or 
less. These separations commonly use 50 m or 60 m columns, carrier gas 
flow rates of 1–2 mL/min, and GC oven temperature programs from 
~40 ◦C to 300 ◦C. While most separations are on nonpolar or low- 
polarity stationary phases (e.g., Ultra-2, DB-5 ms), high-polarity col-
umns (VF-23 ms, ZB-FFAP, and ZB-WAX) substantially improve peak 
shapes of n-acetyl and alkoxycarbonyl ester derivatives, have higher 
analyte capacities, and are compatible with other common derivatives 
(Corr et al., 2007b; Walsh et al., 2014). 

The main advantage of using GC to separate amino acids is the ability 
to couple directly to an IRMS, thus increasing analysis speed and 
sensitivity. The main drawbacks are: (1) low analyte capacity on GC 
columns – i.e., only a small amount of analyte can be introduced without 
degrading peak shape – especially for H and N isotope analyses where 
more sample is needed; (2) low temperature limits for polar columns 
(resulting in long runs and high background signals from degradation of 
the stationary phase); (3) poor suitability for four amino acids (arginine, 
histidine, asparagine, and glutamine are challenging to derivatize); and 
(4) mandatory derivatization (introducing exogenous atoms, additional 
sample workup, and possible isotopic fractionations — see Section 5). 

Comprehensive GC × GC (Tobias et al., 2008, 2011) is a promising 
advancement that uses two columns with different stationary phases to 
improve separation of complex mixtures and reduce preparatory steps. 
This method has been successfully coupled to online isotope 

measurements of other organic compounds (Tobias et al., 2008, 2011) 
and may expand to amino acid isotope analysis. 

6.2. Liquid chromatography 

High performance liquid chromatography (HPLC or, more generally, 
LC) is widely used for offline separation and quantification of amino 
acids, but subsequent isotope analysis requires specialized equipment 
(fraction collectors) or instrumentation (LC–IRMS). LC provides some 
advantages over GC: derivatization is not needed for amino acids, and 
column capacity is substantially higher. However, purifying and col-
lecting fractions offline may necessitate larger sample sizes, especially if 
an EA–IRMS is used for isotope analysis. Certain amino acids, like 
isoleucine and leucine, are difficult to separate when underivatized. 

Amino acid separation by LC typically uses nonpolar stationary 
phases and polar mobile phases (e.g., water, acetonitrile, methanol). The 
Sielc Primesep A is the most popular column for online δ13C (McCullagh 
et al., 2006; Tripp et al., 2006; Smith et al., 2009; Dunn et al., 2011) and 
offline δ15N and δ13C measurements (Broek et al., 2013; Broek and 
McCarthy, 2014; Sun et al., 2020). Primesep A columns can separate 14 
amino acids with run times of 105 mins (Broek et al., 2013). An alter-
native is “hydrophilic interaction liquid chromatography” (HILIC). 
HILIC initially employs a mobile phase with high organic and low 
aqueous content, allowing a small water layer to form between the 
stationary and mobile phases, which provides good separation of amino 
acids – particularly aspartic acid and serine which cannot be separated 
using other LC stationary phases (Park et al., 2019). Finally, while not 
currently common instrumentation, the LC–IRMS system (discussed 
further in Section 7.1.2) enables online C isotope analysis, has similar 
sensitivity to some GC–IRMS applications (Table 3), and may become 
more popular in future amino acid isotope research. 

6.3. Ion chromatography 

Ion chromatography (IC) is primarily used to quantify amino acids, 
but has also been used for online (Morrison et al., 2010) and offline 
(Zhang et al., 2021) IRMS analyses. IC separation can be coupled to an 
IRMS for online C isotope analysis via an Isoprime Liquiface system 
(Morrison et al., 2010). Abaye et al. (2011) used this system to measure 
the δ13C values of 11 amino acids, including arginine, lysine, and some 
aliphatic amino acids, which were quickly resolved (70 mins) with 
adequate precisions (SD < 1‰; Abaye et al., 2011). IC has also been used 
to separate 9 amino acids offline prior to N isotope analysis using a 
purge-and-trap continuous-flow IRMS (Zhang et al., 2021). Advantages 
of separating amino acids by IC are that neither pre- nor post-column 
derivatization is required, and other matrix components (carbohy-
drates, glycols, and sugar alcohols) can be simultaneously separated 
(Larson et al., 2002), minimizing the sample workup steps needed (see 
Sections 2 and 4). A major disadvantage is lengthy run times (180 mins 
or longer; Zhang et al., 2021). 

6.4. Capillary electrophoresis 

Capillary electrophoresis (CE) separates compounds based on 
mobility in an electric field (Ewing et al., 1989) but has not yet been 
coupled to isotope measurements. Although CE currently lacks selec-
tivity compared to other separation methods, its speed, simplicity, and 
low cost hold potential for future applications involving online amino 
acid isotope analysis. As with LC, samples do not require derivatization 
or conversion to gases and CE can be coupled to numerous detectors. 
Chiral buffers can be used to change the mobility of D- vs L-amino acids 
to separate enantiomers (Hutt et al., 1999). Miniaturized versions of CE 
systems (microchip electrophoresis) have been explored for inclusion on 
extraterrestrial sampling missions that investigate amino acids to 
distinguish between biotic and abiotic sources (Hutt et al., 1999; 
Creamer et al., 2017) and may prove useful when combined with 
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sensitive techniques (e.g., high-resolution mass spectrometry – Section 
7.2). 

6.5. Methods of assessing purity 

Most compound-specific isotope analyses require purified samples. 
For example, isotope ratio monitoring by nuclear magnetic resonance 
spectroscopy (NMR; Section 7.3) requires > 98% analyte. Other 
methods, such as EA–IRMS (Section 7.1.3), lack online separation so 
geochemists must first purify amino acids offline for compound-specific 
applications and ensure no contaminants are present. Numerous options 
exist for assessing sample purity. LC–MS or GC–MS can be used to 
identify contaminants (Hare et al., 1991; Phillips et al., 2021), but some 
contaminants may avoid detection if their mass falls outside of the 
analytical window selected. Proton (1H) NMR is an attractive option for 
purity verification as it is non-destructive, rapid (≤5 min), and 
commonly available at user facilities. Elemental composition deter-
mined using an EA system can be used to indirectly assess purity because 
pure amino acids have a narrow range of elemental ratios (C/N =

1.5–9.0, C/S = 3.0–5.0). We recommend verifying sample purity in 
studies using offline separations that are decoupled from the final iso-
topic analyses. 

7. Isotopic analysis 

Potential goals of amino acid isotopic analysis include characterizing 
the stable isotope ratios of one or more elements (13C/12C, 15N/14N, 
34S/32S, and/or 2H/1H), either averaged across each amino acid mole-
cule (“compound-specific” or “molecular-average”) or characterized at 
individual atomic positions (“position-specific” or “intramolecular”). 
Established techniques for characterizing isotopic compositions of 
amino acids from natural samples use IRMS paired with offline or online 
separation strategies (Section 6) and combustion or pyrolysis of sepa-
rated analytes. Additional techniques are in early stages of development 
— especially for position-specific isotope analysis of amino acids — but 
have not yet been applied to terrestrial materials. We describe the iso-
topic analysis techniques that are currently useful to organic geo-
chemists, as well as possible future advancements (e.g., high-resolution 

Table 3 
Summary of analytical techniques for isotopic analysis. Many of these methods have yet to be applied to amino acids from the environment, although some have been 
used to measure amino acid standards.  

Analytical techniquea Isotopes Measured species Specificity Typical 
precision (1σ, 
‰) 

Typical sensitivity 
(nmol) 

Referencesb,c 

IRMS Conventional 
GC–IRMS 

C CO2 Compound-specific ~0.6–2.3 0.1–10 McCarthy et al. (2004)c; Sessions 
(2006); Corr et al. (2007b)b; Baczynski 
et al. (2018) 

N N2 Compound-specific 0.5–1 1–10 McClelland and Montoya (2002)b,c;  
Sessions (2006); Rieckenberg et al. 
(2020)b,c 

H H2 Compound-specific ~10 10–50 Sessions (2006); Fogel et al. (2016)b,c 

Optimized 
GC–IRMS 

C CO2 Compound-specific 0.9–1.5 0.05–0.6 Baczynski et al. (2018) 

Pyrolysis- 
GC–IRMS 

C CO2 (from 
pyrolytic 
fragments) 

Position-specific ~1 ~100s Wolyniak et al. (2005)b;  
Gilbert et al. (2016a,b) 

LC–IRMS C CO2 Compound-specific 0.1–1.4 7–55 Smith et al. (2009)b,c; Dunn et al. 
(2011)b,c 

PT-CF–IRMS N N2O Compound-specific 0.3–0.7 <15 Zhang et al. (2021)b,c 

FIA-NR–IRMS C CO2 (from 
carboxyl group) 

Position-specific 0.1 15 Fry et al. (2018)b; Fry and Carter 
(2019)b,c 

SWiM–IRMS C CO2 Bulk 0.6 1–10 Sessions et al. (2005)b; Eek et al. 
(2007) 

Conventional 
EA–IRMS 

C CO2 Bulk 0.1–0.5 2000–8500 Polissar et al. (2009); Ogawa et al. 
(2010)b; Sun et al. (2020)b,c 

N N2 Bulk 0.1–0.5 1500–3500 Ogawa et al. (2010)b; Broek et al. 
(2013)b,c; Rieckenberg et al. (2020)b,c 

S SO2 Bulk 0.3 500–3000 Giesemann et al. (1994) 
TCEA–IRMS H H2 Bulk 0.3–3 300,000 Gehre et al. (2015)b; Fogel et al. 

(2016)b;  
Newsome et al. (2020)b 

Optimized 
EA–IRMS 

C CO2 Bulk 0.2–0.5 40–60 Polissar et al. (2009) 
N N2 Bulk 0.1–0.5 10–25 Polissar et al. (2009); Ogawa et al. 

(2010)b;  
Broek and McCarthy (2014)b,c;  
Swalethorp et al. (2020)b,c 

S SO2 Bulk 0.1–0.3 50–150 Phillips et al. (2021); Sayle et al. 
(2019)b,c  

High- 
resolution 
MS 

Orbitrap C, N, S, 
H 

Molecular ion, 
fragment ions 

Compound-specific, 
position-specific 

≤1 ~0.1–10 Eiler et al. (2017); Neubauer et al. 
(2018)b; Chimiak et al. (2021)b,c  

NMR 13C NMR C Molecule Position-specific ~1 ~1,000,000 Romek et al. (2017)b 

1H NMR C Molecule Position-specific 0.5–3.5 50,000–300,000 Rasmussen and Hoffman (2020)b  

a Abbreviations: IRMS, isotope ratio mass spectrometry; GC–IRMS, gas chromatography–IRMS; LC–IRMS, liquid chromatography–IRMS; PT-CF–IRMS, purge-and- 
trap continuous-flow IRMS; FIA-NR–IRMS, flow injection analysis reaction with ninhydrin–IRMS; SWiM–IRMS, spooling wire micro-combustion–IRMS; EA–IRMS, 
elemental analysis–IRMS; TCEA–IRMS, thermal conversion-EA–IRMS; NMR, nuclear magnetic resonance. 

b Method applied to pure amino acid standards. 
c Method applied to amino acids in natural (terrestrial or extraterrestrial) materials. 
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mass spectrometry), summarizing figures of merit, required preparatory 
steps, and key advantages and disadvantages. Methodological im-
provements will continue to combine different online separation and 
isotope detection strategies in novel ways. 

7.1. Isotope ratio mass spectrometry 

IRMS achieves high levels of precision and accuracy (Table 3) via 
simultaneous comparison of two or more isotopes (i.e., the isotope 
ratio). Isotope ratios are further compared between the sample and a 
standard of known composition on an international scale (e.g., VPDB) 
and reported as δ values (Eq. (1)). Amino acids must be quantitatively 
converted to CO2 (for 13C/12C analysis), N2 (15N/14N analysis), H2 
(2H/1H analysis) or SO2 (34S/32S analysis; Table 3) for IRMS measure-
ments. This goal was originally achieved by combusting pre-purified 
amino acids in sealed tubes offline, then isolating the resulting CO2 
and N2 for isotope analysis (Abelson and Hoering, 1961; Macko et al., 
1983; Tuross et al., 1988). Today, this is typically achieved via online 
methods in which analytes are carried by an inert gas through a chem-
ical conversion interface on their way to the IRMS. The most common 
interfaces employ combustion or pyrolysis, but other techniques such as 
chemical oxidation or high-temperature combustion-desolvation have 
also been reported (Tea and Tcherkez, 2017). Here we cover GC–IRMS, 
LC–IRMS, and EA–IRMS instrumentation, and summarize capabilities of 
these methods in Fig. 6. For more detailed reviews of IRMS principles, 
analytical considerations, and historical context, see Brenna (1994), 
Brand (1996), Brenna et al. (1997), Meier-Augenstein (1999), and Ses-
sions (2006). 

7.1.1. GC–IRMS 
GC–IRMS is routinely used to measure compound-specific δ13C and 

δ15N values of amino acids (Ohkouchi et al., 2017; Close, 2019), and, 
less commonly, δ2H values (Fogel et al., 2016; Newsome et al., 2020). 
The GC is typically coupled to the IRMS via a combustion (for CO2 or N2) 
or pyrolysis (for H2) interface. Amino acid samples must be derivatized 
for GC separation and free of water, particles, elemental S, and salts to 
avoid damage to the GC column and chemical conversion interface. 

GC–IRMS can achieve instrumental precision of ≤0.1‰ for C, <1‰ 
for N, and 2‰ for H in other common analytes (Table 3; Sessions, 2006). 
Amino acids have larger propagated uncertainties of 0.6‰ to over 2‰ 
for C (e.g., Corr et al., 2007a; Smith et al., 2009; Dunn et al., 2011) and 
up to ~10‰ for H (Table 3; Fogel et al., 2016) because the added C or H 
derivative atoms increase the uncertainty on the final amino acid isotope 
ratio (see Section 5). Measurements typically require ~0.1 to 10s of 
nmol C or N, and one to two orders of magnitude more H (Table 3). 
Specific advantages of GC–IRMS for amino acid isotope analysis are its 

high sensitivity and high throughput. GC–IRMS is especially appropriate 
for small samples and for researchers seeking concurrent isotopic data 
on as many amino acids as possible. Disadvantages include difficulty of 
use, added sample workup steps, and larger uncertainties associated 
with derivatization. Recent work couples narrow-diameter column 
(“fast”) GC to IRMS (Sacks et al., 2007; Baczynski et al., 2018), paving 
the way for future amino acid isotope analyses with sharper chro-
matographic peaks, faster run times, and enhanced sensitivity for δ13C 
analyses. 

7.1.2. LC–IRMS 
A recent development, the Finnigan LC IsoLink system (LC–IRMS), 

provides the ability to measure 13C/12C isotope ratios of underivatized 
amino acids separated online by liquid chromatography (McCullagh 
et al., 2006; Juchelka and Krummen, 2008). Samples are introduced in 
dissolved form, separated by LC, and chemically oxidized to CO2 (at 100 
◦C) before introduction into the IRMS (Juchelka and Krummen, 2008; 
Godin and McCullagh, 2011). Several studies demonstrate that quanti-
tative conversion to CO2 can be achieved across environmentally rele-
vant sample sizes. Leucine samples with concentrations of ~50–300 ng 
μL− 1 had δ13C precisions ≤0.15‰ (Juchelka and Krummen, 2008), 
although standard deviations were higher (0.35‰) for a mixture of four 
amino acids at concentrations of ~50–400 ng μL− 1 (Juchelka and 
Krummen, 2008). 

A significant drawback to current LC–IRMS systems is that they must 
use acidic, organic-free mobile phases, as any organic solvents would be 
oxidized to CO2 along with the analytes. Typical concentrations of 
organic solvents used in mobile phases for LC separations would saturate 
the IRMS detector (Godin et al., 2005). Additionally, LC–IRMS is 
generally less sensitive than GC–IRMS and can only measure C isotopes, 
not N or H (Fig. 6). For information on LC–IRMS technical challenges 
and solutions, we refer the reader to a review by Godin and McCullagh 
(2011). Thus far, LC–IRMS systems have successfully measured amino 
acids from peptides and archaeological samples (Godin et al., 2005; 
McCullagh et al., 2006), but methods are still in development for com-
plex materials like marine sediments (Close, 2019). 

7.1.3. EA–IRMS 
EA–IRMS instruments are most commonly used to measure the bulk 

isotopic compositions of complex, solid samples, but can also be coupled 
with offline preparatory techniques such as LC with fraction collection 
to provide isotopic measurements of individual amino acids or proteins 
(e.g., Broek et al., 2013; Dong et al., 2017). Isolated amino acids are 
packed into metal foil capsules, combusted to CO2, N2, H2O, and/or SO2, 
then dried and separated using a short GC column for isotope ratio 
measurement. 

Fig. 6. Summarized capabilities of common 
analytical techniques used for amino acid isotope 
analysis. Sensitivities given are lower limits. 
“Multi-element” refers to simultaneous measure-
ment of different isotopic systems (i.e. 13C/12C 
and 15N/14N) in a single analysis. “Online sepa-
ration” refers to the ability to measure multiple 
compounds from a mixture online. A “position- 
specific” measurement encompasses the ability to 
extract isotopic information from individual sites 
within a compound. We do not consider bulk or 
compound-specific isotope measurements on 
molecules containing single elements (e.g., N or S 
in amino acids), nor chemical approaches to site- 
specific measurements (e.g., decarboxylation re-
actions) as “position-specific” capabilities of the 
instrument. For more details and references, see 
Table 3 and Section 7.   
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Although three orders of magnitude less sensitive than GC–IRMS 
(requiring μmol of C or N; Fig. 6; Table 3) and requiring time-consuming 
offline separations, EA–IRMS systems may be the ideal choice for certain 
specialized applications (e.g., δ34S measurements of pre-isolated 
cysteine or methionine or high-precision δ15N measurements) or when 
sample size is not limiting. Additionally, EA–IRMS instruments are more 
widely available, achieve better precisions (~0.1–0.5‰; Table 3), and 
are simpler to operate than GC–IRMS or LC–IRMS. Perhaps most 
importantly, EA–IRMS offers the ability to simultaneously analyze the 
isotope ratios of multiple elements in the same acquisition (e.g., C and N, 
with or without S; Fry, 2007; Broek and McCarthy, 2014; Fourel et al., 
2014; Brodie and Kracht, 2016; Sayle et al., 2019)—although this 
strategy is not yet established for amino acids (Fig. 6). 

Recent optimizations have enhanced the sensitivity of EA–IRMS 
(Table 3). The nano-EA–IRMS system (Polissar et al., 2009) improved 
sensitivities by 100–500-fold for δ13C and δ15N measurements of pre- 
purified amino acids, while achieving similar precisions (Broek and 
McCarthy, 2014; Swalethorp et al., 2020). Optimizations for S isotope 
analysis by EA–IRMS (Fry, 2007; Fourel et al., 2014) enabled the first 
compound-specific δ34S measurements of cysteine and methionine 
(Phillips et al., 2021). Furthermore, H isotope analysis by pyrolysis EA 
(also known as thermal conversion EA, or TCEA), has been demon-
strated for ~0.3 mmol analyte (Table 3; Gehre et al., 2015) but has only 
been applied thus far to pure amino acid standards (Fogel et al., 2016; 
Newsome et al., 2020). 

We see optimized EA–IRMS systems (in combination with auto-
mated, offline preparatory techniques) as an area of potential for amino 
acid isotope studies, especially when leveraged for analyzing multiple 
isotope systems simultaneously. We recommend optimized EA–IRMS 
configurations for measuring amino acid δ34S values, as S cannot be 
measured by GC–IRMS or LC–IRMS systems, and we emphasize that 
EA–IRMS can achieve more precise and accurate δ15N measurements 
than GC–IRMS (Table 3; Broek and McCarthy, 2014; Swalethorp et al., 
2020). For individual applications, these advantages must be weighed 
against the need for offline sample separation and large sample sizes, 
and/or the availability of optimized instrumentation like the nano- 
EA–IRMS. 

Finally, we note that a variety of other promising IRMS configura-
tions have been applied to isotope analysis of individual amino acids or 
proteins by initially isolating analytes offline using preparatory tech-
niques. These approaches include “spooling wire micro-combustion 
IRMS” (SWiM–IRMS; Sessions et al., 2005; Eek et al., 2007), and 
purge-and-trap continuous-flow IRMS (PT-CF–IRMS; Zhang et al., 
2021). These configurations are not yet widely available but achieve 
sensitivities and precisions similar to GC–IRMS without requiring 
derivatization (see Supplementary Section 3). 

7.1.4. IRMS configurations for position-specific isotope analysis 
Other IRMS-coupled techniques are in development for position- 

specific isotope analysis. The approach is to introduce an initial chem-
ical/thermal degradation step that isolates different atomic positions of 
the analyte prior to isotope ratio measurement. One example is “flow 
injection analysis reaction with ninhydrin IRMS” (FIA-NR–IRMS), which 
uses a chemical reaction to decarboxylate amino acids and measure the 
position-specific δ13C value of the carboxyl-C position with ~0.3–0.5‰ 
precision (Table 3; Fry et al., 2018, Fry and Carter, 2019). Another is a 
method for the preparatory isolation and chemical work-up of free 
glutamine for position-specific δ15N measurement by PT-CF–IRMS 
(Table 3; Lee et al., 2021). Glutamine is split into two fractions: (1) the 
amino-N is oxidized to nitrite, and (2) the amide-N is converted into 
ammonium by acid hydrolysis, then oxidized to nitrite. Both nitrite 
pools are reduced to N2O and analyzed separately, recovering isotope 
ratios for the amino-N and amide-N, respectively. Finally, several vari-
ations of online-pyrolysis-GC–IRMS systems have been developed and 
applied to position-specific 13C/12C analysis of amino acid standards. 
Analytes are thermally converted (pyrolyzed) into fragments that 

encompass different carbon positions from the original amino acid 
molecule. These fragments are then separated by GC, individually 
combusted, and measured by IRMS to recover position-specific signa-
tures (for reviews, see Gauchotte-Lindsay and Turnbull, 2016; Gilbert, 
2021). Published precisions range from <0.2‰ for directly measured 
positions of alanine and phenylalanine standards to 0.9–6.5‰ for 
calculated position-specific δ13C values due to error propagation 
(Table 3; Wolyniak, 2005). Application of these techniques to amino 
acids in geochemical samples has not yet been realized. 

7.2. High-resolution mass spectrometry 

Directly converting amino acids to CO2, N2, and H2 destroys infor-
mation recorded in the position-specific distributions of isotopes. For 
example, 13C-enrichment at the C-1 versus C-2 position in alanine has 
different implications for its origins (Chimiak et al., 2021), but cannot be 
discerned from the ratio of 13C/12C in CO2 produced by whole-molecule 
combustion (e.g., as in GC–IRMS). High-resolution mass spectrometry of 
intact analyte ions (as opposed to whole combustion or pyrolysis prod-
ucts) provides an avenue for analyzing position-specific isotope distri-
butions in amino acids. This approach is still in development for natural 
materials relevant to organic geochemists (e.g., plant biomass – Wilkes 
et al., 2019), but represents a promising future direction. 

Position-specific isotope ratios can be accessed by measuring frag-
ments of an amino acid molecule, which form spontaneously during 
ionization and/or collision in an ion trap. Constraining position-specific 
isotopic differences is accomplished by measuring and comparing 
isotope ratios of two or more fragments of an amino acid in a mass 
spectrometer. These measurements require that the spectrometer can 
distinguish molecular fragments containing different rare isotopes, e.g., 
13C vs 2H or 15N (Supplementary Section 4). Several mass spectrometers 
achieve mass resolutions that can distinguish these different rare isotope 
substitutions, but only Orbitrap™-based instruments have been studied 
in detail (e.g., Eiler et al., 2017; Hofmann et al., 2020; Neubauer et al., 
2020; Hilkert et al., 2021). Orbitrap mass analyzers may be coupled to 
GC or LC for online isolation of amino acids; thus, required sample 
preparation (e.g., derivatization) and clean-up steps would reflect the 
choice of instrumentation. In addition, Orbitrap instruments hold the 
potential to measure clumped-isotope compositions of amino acids (i.e., 
containing two or more rare isotopes). 

Orbitrap analysis of pure amino acid standards indicates minimal 
sample sizes are required to obtain δ13C precisions ≤1‰ for fragments of 
amino acids (Table 3; Eiler et al., 2017; Neubauer et al., 2018). An initial 
application to samples of the Murchison meteorite revealed substantial 
differences in δ13C values between different atomic sites within mete-
oritic alanine (Chimiak et al., 2021), but had large propagated un-
certainties for individual C positions. Limitations of this measurement 
approach for amino acids may include insufficient fragmentation or the 
lack of available position-specific isotopic reference materials for 
reporting results. For example, while Neubauer et al. (2018) calculated 
isotope ratios for most positions of pure methionine samples, not all 
amino acids fragment as easily (Piraud et al., 2003; Zhang et al., 2019). 
Accurately identifying the atomic positions from the original amino acid 
that ends up in each fragment is crucial but may present a bottleneck, as 
isotope labeling experiments may be required to resolve ambiguities. 
Further, standardization requires a separate working standard for each 
amino acid analyzed, which must then be characterized by a different 
position-specific isotopic technique (e.g., NMR) to anchor results to an 
international reference frame (e.g., VPDB). 

7.3. Nuclear magnetic resonance spectroscopy (NMR) 

Isotopic NMR (or SNIF-NMR®, hereafter simply NMR) provides 
stable C and H isotope ratios for individual atomic positions within an 
amino acid by 13C NMR or 2H NMR, respectively (Vallet et al., 1991; 
Romek et al., 2017). Because of its large sample size requirements 
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(Table 3), NMR is best suited for characterizing pure standards but 
provides a path for establishing position-specific isotope standards 
anchored to the international scale that may be used with a more sen-
sitive technique (e.g., Orbitrap). A separate radio frequency signal is 
produced by each chemically distinct 13C or 2H atom within a molecule. 
These NMR signals are quantified through peak integration and used to 
calculate position-specific isotope distributions by comparison with the 
average isotope ratio for the entire molecule (measured separately by 
IRMS; reviewed by Jézéquel et al., 2017). However, 13C NMR and 2H 
NMR typically require hundreds of milligrams (~1 mmol) of pure ana-
lyte to achieve precisions of ~1‰ and 5‰, respectively (Table 3; Romek 
et al., 2017; Gilbert, 2021). Such sample size requirements are prohib-
itive for applications to amino acids from natural samples and all pub-
lished NMR analyses of amino acids to date have targeted pure standards 
(Vallet et al., 1991; Romek et al., 2017; Rasmussen and Hoffman, 2020). 
An alternative NMR approach for position-specific 13C/12C analysis was 
recently applied to amino acid standards using 1H NMR (Rasmussen and 
Hoffman, 2020; Supplementary Section 5). This technique has at least 
two advantages over direct 13C NMR, while achieving similar precisions 
(~1‰; Table 3) and accuracies: (1) it uses more commonly available 
equipment, and (2) it is an order of magnitude more sensitive (Table 3; 
Hoffman and Rasmussen, 2019). One challenge of using 1H NMR to 
study C isotopes is that not all C positions in amino acids are visible. 

All of the above NMR techniques are non-destructive and can be 
readily calibrated to internationally recognized scales, yet NMR has 
significant drawbacks compared to other isotopic measurements – 
notably, poor sensitivity and precision (requiring up to six orders of 
magnitude more C than IRMS for 0.5–3.5‰ precision; Table 3). NMR 
requires analytes to be purified (>98%) offline prior to measurement, 
followed by several hours of analysis (Remaud et al., 2018). While 
analytical advances are ongoing (see Jézéquel et al., 2017; Hoffman and 
Rasmussen, 2019), we anticipate NMR will remain most useful as a 
complementary technique for calibrating standards rather than a pri-
mary tool for measuring isotope ratios in (bio)geochemical samples. 

7.4. Referencing strategies for isotopic analysis 

Making accurate and precise isotope ratio measurements are major 
challenges in the stable isotope community. As compound-specific (and 
emerging position-specific) isotope applications expand across fields, 
the need for inter-laboratory comparability of data becomes more ur-
gent. In addition to variable sample preparation strategies, protocols 
used across laboratories to calibrate and quality-check isotope ratio 
measurements are inconsistent, which hampers data reproducibility 
between studies (Carter and Fry, 2013; Yarnes and Herszage, 2017). 
Inter-laboratory comparisons of amino acid δ13C values recovered from 
the same samples are not commonly published, but when done so, often 
show disagreement (e.g., Arthur et al., 2014; Ayayee et al., 2015); 
comparisons for N isotope analyses are even less common. Following 
recommendations by Carter and Fry (2013) and Yarnes and Herszage 
(2017), we urge widespread adoption of the following standardization 
practices: (1) calibration of data based on internal standards (synthetic 
amino acids like norleucine that are co-injected with samples) and/or 
multipoint amino acid isotope standards (i.e., spanning a range of iso-
topic compositions outside those of samples) to account for scale 
compression effects by instruments (e.g., Yarnes and Herszage, 2017; 
Riekenberg et al., 2020; Zhang et al., 2021), (2) use of quality assess-
ment materials, such as an external standard measured repeatedly 
throughout sample analysis (e.g., Styring et al., 2015), to verify mea-
surement accuracy, and (3) increased comparisons of isotopic data be-
tween laboratories and publication of results. 

Several internationally recognized amino acid reference materials 
are available for compound-specific isotope analysis: glycine, L-valine, 
and L-glutamate standards with known values of δ13C and δ15N have 
been calibrated through interlaboratory ring tests and are distributed by 
the USGS, IAEA, and Indiana University (Qi et al., 2003, 2016; 

Schimmelmann et al., 2016). Comparability of isotope ratio measure-
ments would be greatly improved by the development of: (1) additional 
amino acid standards encompassing a wider range of δ13C and δ15N 
values, (2) amino acid δ2H and δ34S reference materials (the former 
effort is currently challenged by lack of a reliable method to correct for 
exchangeable hydrogen (Schimmelmann et al., 2016), (3) 
internationally-recognized protein standards with calibrated amino acid 
isotopic compositions (Yarnes and Herszage, 2017), and (4) position- 
specific reference materials anchored to international scales. 

8. Conclusions and outlook 

We have synthesized the extensive literature on amino acid isotope 
analysis from preparation to measurement, highlighting established 
techniques and emerging technologies that may offer future benefits to 
geochemists. We emphasize that there is no “one size fits all” method for 
amino acid isotopic analysis: researchers have multiple options and 
choices will be guided by sample type, individual applications, and 
available resources. Over the next decade, attention to standardizing 
referencing strategies and developing reference materials is needed for 
data generated across laboratories to be reproducible. A second bene-
ficial area of attention is measuring H and S isotope ratios in amino 
acids, which would expand environmental and ecological applications. 
For example, 2H/1H ratios could provide information on migration and 
energy flow (e.g., Rubenstein and Hobson, 2004; Bowen et al., 2005; 
Fogel et al., 2016), and 34S/32S ratios could track dietary protein sources 
(e.g., Richards et al., 2001). To date, the δ2H and δ34S values of amino 
acids have been characterized in relatively few published studies (Fogel 
et al., 2016; Newsome et al., 2020; Phillips et al., 2021), so the full 
potential of these measurements is only beginning to be explored. 

Finally, we see three areas of amino acid isotope research where 
methodologic innovation will have the most impact. First, there are 
numerous opportunities for method automation. In addition to the 
substantial improvements stemming from online LC–IRMS and 
GC–IRMS techniques, further coupling (e.g., combining protein hydro-
lysis with high pressure ion-exchange clean-up) would increase 
throughput. A second area for innovation is simultaneous analysis of 
multiple isotope systems on the same sample and instrument. Because 
preparing amino acids for isotope measurement is tedious, measuring H, 
C, N, and S concurrently offers greater reward and is increasingly 
possible with techniques like optimized EA–IRMS and high-resolution 
mass spectrometry. Multi-element analysis of amino acids will be 
especially helpful for ecological and forensics studies that reconstruct 
modern and paleo diets, food webs, animal and human movement, and 
behaviors of ancient civilizations. Third, we see a renaissance in 
position-specific isotope analysis via high-resolution mass spectrometry 
and/or pyrolysis-GC–IRMS. Specific intramolecular information, such as 
C–S bond clumping in methionine or C–H bond clumping in aliphatic 
residues, could inform targeted questions about synthesis. Further, the 
ability to measure position-specific isotope ratios at natural abundance 
may complement or replace isotope labelling methods in metabolomics 
studies. None of these advancements will be possible without the 
analytical expertise of isotope geochemists and ecologists, whose ex-
periments and observations will inform these promising frontiers. 
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Gélinas, Y., Baldock, J.A., Hedges, J.I., 2001. Demineralization of marine and freshwater 
sediments for CP/MAS 13C NMR analysis. Organic Geochemistry 32, 677–693. 

Ghashghaie, J., Tcherkez, G., 2013. Isotope ratio mass spectrometry technique to follow 
plant metabolism: principles and applications of 12C/13C isotopes. In: Rolin, D. (Ed.), 
Metabolomics Coming of Age with its Technological Diversity, vol. 67. Elsevier, 
Oxford, pp. 377–405. 
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Hušek, P., 1991b. Rapid derivatization and gas chromatographic determination of amino 
acids. Journal of Chromatography A 552, 289–299. 
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